
12th European Conference on Object-Oriented Programming
Workshop on Parallel Object-Oriented Scientific Computing

Brussels, Belgium, July 20-24, 1998

Applying Fortran90 and Object-Oriented Techniques to Scientific Applications

Charles D. Nortonl, Viktor K. Decyk1.2, and Joan Slottow3

1 Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA, USA
2 Department of Physics and Astronomy, UCLA, Los Angeles, CA, USA
3 Office of Academic Computing, UCLA, Los Angeles, CA, USA

1. Introduction

High-performance parallel computing is having a profound impact on the size and
complexity of physical problems which can be modeled. This impact has been a long time
in coming, because the learning curve in adapting to this new world of computing is
steeper than was imagined. Nevertheless, more and more success stories have convinced
Computational scientists that parallel computing is important and is here to stay. To
model complex, 3D physical systems, older paradigms of programming which were
adequate in a 2D world, now become cumbersome and limiting.

One needs a language with higher levels of abstraction for such problems. A few
pioneering computational scientists have turned to the object-oriented paradigm, and
particularly C++ for help. Fortran90, while not a true object-oriented language, also has
powerful facilities for abstraction, and object-oriented programming is possible by
emulating in software the 00 features which are not in the language [1-21. These features
allow the code to be designed using the same abstractions that exist in object-oriented
languages, but in a Fortran framework more familiar to most computational scientists. In
this paper, we will discuss our experience in using Fortran90 for parallel adaptive mesh
refinement, scientific visualization, and plasma particle-in-cell simulations.

11. Parallel AMR

One area we have been working on is parallel, unstructured adaptive mesh refinement
(AMR). Organizing and programming the data structures for parallel AMR is very
difficult. The main structure is the computational mesh that represents a complex
geometry with many components. With the older style programming paradigms available
in Fortran77 and C, using parallel AMR is so complex that its use has been limited. Object-
oriented methods using C++, have been applied to manage the complexity for this
problem before [3]. We have found that Fortran90 is equally useful.

For example, a Fortran90 module allows user-defined data types and related routines to
be encapsulated in a class - an important feature of object-oriented programming. A
mesh-module (abbreviated) can contain the definition of a mesh data structure and mesh
operations:

module mesh-module
use mpi-module ; use heapsort-module
i m p l i c i t none
p r i v a t e
pub l i c : : mesh-create-incore, mesh-repartition, &

type mesh
m e s h v i s u a l i z e

p r i v a t e
type (node) , dimension (:) , p o i n t e r : : nodes
type (edge) , dimension (:) , p o i n t e r : : edges
type (element) , dimension (:) , p o i n t e r : : elements
type(b-element), dimension(:) , pointer : :boundary-elements

end type mesh
conta ins
subrout ine mesh-create-incore(this, mesh-file)

type (mesh) , i n t e n t (i n o u t) : : t h i s
c h a r a c t e r (l e n = *) , i n t e n t (i n) : : mesh-file
! d e t a i l s o m i t t e d

! a d d i t i o n a l member rou t ines
end subroutine mesh-create-incore

end module mesh-module

This encourages the development of simple interfaces whose internal features can be
changed without impacting their usage in the main program. Features of one module can
be made available to another via the "use" statement. Fortran90 also supports pointer
structures, in addition to many other dynamically allocatable structures. The example
above illustrates pointers to dynamic arrays. With these features AMR objects can be
created easily

Sometimes it is necessary to interface to programs written in other languages. The
ParMeTiS mesh partitioner [4] is used for parallel mesh partitioning, yet it is written in the
C programming language. Interlanguage communication between Fortran90 and C is not a
problem, once the proper format for function references is determined. Our design uses a
single routine that acts as the conduit between the Fortran90 parallel AMR code and the C
mesh partitioner:

subrout ine mesh-repar t i t ion(th is)
type(mesh) , i n t e n t (i n o u t) : : t h i s

! s ta tements omit ted
c a l l PARMETIS(mesh-adj, mesh-repart, nelem,nproc) ! c c a l l
ca l l mesh-build(this, new-mesh-repart=mesh-repart)

end subroutine mesh-repartition

The graph description of the distributed mesh is passed by reference to the C code which
returns the partitioning to Fortran90. Since Fortran90 optional arguments can be selected
by keyword, rebuilding the mesh using the new partitioning can reuse the same code as
constructing the original mesh. Since the mesh-build routine is private to the module
containing the mesh-repartition routine, mesh-build cannot be called by the main
program.

Such features allow for a very abstract design and representation of source code for
parallel AMR. A main program that loads a mesh, distributes it among the parallel

processors, creates the mesh data structure, performs repartitioning and visualization, now
looks like this:

program pamr
use mesh-module
i m p l i c i t none
! s ta tements omit ted
type (mesh) : : in-mesh

ca l l MPI-INIT (i e r r o r)
c a l l mesh-create-incore(in-mesh, in-f i le)
c a l l mesh-reparti t ionb-mesh)
c a l l mesh-visual ize(in-mesh, "visf i le .pl t")
c a l l MPI-FINALIZE (i e r r o r)

end program pamr

Our parallel AMR library routines have been applied to the finite-element simulation
of electromagnetic wave scattering in a waveguide filter, and long-wavelength infrared
radiation in a quantum well infrared photodetector as test cases in two-dimensions (a
three-dimensional system is under development). The software currently runs on the Cray
T3E, HP/Convex Exemplar, IBM SP2, and Beowulf-class "pile-of-pc's" running the LINUX
operating system [SI.

111. Scientific Visualization

In the days when the world was 2D, many computational physicists included graphics
in the output of their simulation by making use of graphics libraries. In the new 3D world,
the amount of expertise required to embed visualization into simulations is so great, that
the computational scientists have largely abandoned this altogether, and do visualization
in an independent, post-processing step. This leads to a lot of time-consuming busy work
in moving data around and learning the concepts and particulars of some visualization
program. It is not unusual in our group for a student to spend an entire summer learning
how to make one beautiful picture of a complex simulation. It also makes interactive
exploration of simulations nearly impossible. Finally, the underlying visualization
programs themselves can change or disappear in response to the market place, causing
further problems for the scientist.

Our goal was to remove these barriers to visualization and to provide a stable
environment for the scientific programmer. Our approach was to develop a Fortran90
class library which produced a typical 3D graphical image for each particular type of data [6].
We call our class library Visual Data Objects (VDO) because its objects describe the structure
of the underlying scientific data and are self-visualizing. The objects are designed to
always produce a reasonable image by default, and optional controls are provided so that
the scientist can customize or improve the images if desired. The kinds of data objects
currently supported are those most common: lD, 2D, and 3D vector and scalar fields on
regular meshes, although support for irregular objects is planned. The Fortran90 class
library contains objects which specify the data structure and aspects of the visualization,
information the user needs to control. Only a few lines of code need to be added to the
program to obtain an image.

Those commercial and public-domain visualization programs which can be called from

L~

an application program are used as the underlying visualization engines. These programs
generally have a C interface and are sometimes difficult to call from Fortran. To more
easily interface with these visualization engines, a C++ library was written to drive them.
This library allows us to change the underlying engine without impacting the Fortran
scientific code. For example, VDO currently supports IBM’s Data Explorer as a
visualization engine. We plan to support the Visualization ToolKit (VTK) in the future
because it is free and can run on all platforms. Thus, if IBM’s product becomes unavailable
to the scientist, he or she can request that one of the other visualization engines be used.

There is one C++ visualization class in VDO for each visualization engine, but the
Fortran program need not be concerned with how it operates. The Fortran classes delegate
to the C++ classes the procedures directly relating to the graphics, while performing the
remaining ones itself. In fact, a single routine (Visualize) acts as the conduit between the
Fortran90 and C++ code. Objects in Fortran90 and C++ are generally not compatible. For
example, Fortran90 pointers are hidden structures and C++ objects can contain hidden
pointers. However, by restricting what goes into an object, we can safely pass a Fortran90
derived type that is read in C++ as a struct and is used in a special constructor to recreate
the Fortran90 object in C++ [61.

Visual Data Objects was designed to be run from parallel programs. Since many
installations require that long-running parallel programs be run in batch mode, VDO is
designed to either display the graphical images or write them to files at the user’s
discretion. More information is available on the web page:
http:/ /computing.oac.ucla.edu/sciviz/visualdataobjects.htm

IV. Plasma Particle-in-Cell Simulations

For the past several years, we have been using both Fortran90 and C++ for plasma
simulation. Our first effort was a plasma particle-in-cell (PIC) simulation code written in
C++, using message-passing on distributed memory parallel computers. Once the new
language features of Fortran90 became known to us, we translated this original C++ code
into Fortran90 and discovered, somewhat to our surprise, that most of the C++ code could
be translated directly, and the performance of the Fortran90 code was substantially better,
typically by a factor of two [7-81. This encouraged us to examine Fortran90 further.

Development of the parallel PIC in both languages has continued, with ideas suggested
by one language being incorporated into the other. In general, we have found strengths
and weaknesses in both languages, discussed in the next section. Our future plans are to
develop a flexible, modular set of classes and objects which could be used to quickly
assemble a new code targeted for a particular problem domain and architecture.

V. Conclusions

For most purposes, Fortran90 has proved very useful in complex, scientific
programming. The use of derived types and dynamic memory and pointers permitted
complex structures to be expressed easily and safely. In general, we have found that
Fortran90 is a safer language for programming than C++ and development is faster, since
the compiler finds more errors. This is achieved by restricting or encapsulating use of

’ 2 some language features, such as pointers, but results in reduced flexibility.
Perhaps the most notable area where reduced flexibility might be important is the lack

of language support for inheritance, which allows related types to share data and
procedures. This lack was addressed by developing emulation techniques for inheritance
and run-time polymorphism 11-21. (These features will be supported in Fortran2000.) It
turned out that for most of our scientific calculations, inheritance was not used very much
neither in Fortran90 nor in CCC. Even when it was used, it was typically for the non-
scientific parts of the problem, such as in performance monitoring or timing.

example, in the PIC simulations, lD, 2D, and 3D models have similar organizations and
interfaces, but the algorithms and data for each model are not simply related. We would
like to be able to decide at run time, what kind of model we are running. This desired
behavior was implemented in Fortran90 by creating polymorphic types that could refer to
anything we liked. This was also possible to do in C++, by creating an abstract interface
class which contained no data members or methods, and then have other classes inherit
nothing but the interface. Most object-oriented languages combine inheritance and run-
time polymorphism into a single language mechanism. The fact that inheriting nothing is
useful indicates that these concepts probably should be separated.

Run-time polymorphism was occasionally useful, but not always with inheritance. For

References

E11 V. K. Decyk, C. D. Norton, and B. K. Szymanski, ”Expressing Object-Oriented Concepts
in Fortran90 ” ACM Fortran Forum 16, 13 (1997).

[2] V. K. Decyk, C. D. Norton, and B. K. Szymanski, NASA Tech Briefs, vol. 22, no. 3, p. 100
(1998). See also: http://www,cs.rpi.edu/-szymansk/oof90.html

[3] Shephard, M., Flaherty, J., de Cougny, H., Ozturan, C., Bottaso, C., and Beall, M. (1995).
Parallel automated adaptive procedures for unstructured meshes. In Parallel Computing
in CFD, number R-807, pages 6.1-6.49. Agard, Neuilly-Sur-Seine, France.

[4] Karypis, G., Schloegel, K., and Kumar, V. (1997). ParMeTiS: Parallel Graph Partitioning
and Sparse Matrix Ordering Library Version 1.0. Technical report, Dept. of Computer
Science, U. Minnesota.

[5] J. Z. Lou, C. D. Norton, and T. Cwik, ”A Robust Parallel Adaptive Mesh Refinement
Software Package for Unstructured Meshes,” submitted for publication, 1998.

[6] J. Slottow and V. K. Decyk, ”Visual Data Objects -- A Visualization Tool for the Scientist
Programmer,” submitted for publication, 1998.

[7] C. D. Norton, ”Object Oriented Programming Paradigms in Scientific Computing,”
Ph. D. Thesis, Rensselaer Polytechnic Institute, Troy, NY, 1996.

[B] C. D. Norton, B. K. Szymanski, and V. K. Decyk, ”Object-Oriented Parallel Computation
for Plasma Simulation,” Comrn. of ACM, vol 38, no. 10, p. 88 (1995).

http://www,cs.rpi.edu/-szymansk/oof90.html

